Home >

Building A Tensorflow Lite Neural Network Vibration Classifier, With A Little Help From DSP

John Edwards - Available in 16 hours and 32 minutes (2022-10-05 08:30 EDT) - Duration: 01:03:14

Building A Tensorflow Lite Neural Network Vibration Classifier, With A Little Help From DSP
John Edwards
This presentation will walk through a Python Notebook that uses a combination of DSP and a Convolutional Neural Network (CNN) to classify multiple vibration modes of a rotating machine.
The key to developing an efficient vibration mode classifier is the use of DSP algorithms to optimize the task.
The DSP functions will pre-process the data to allow a simpler Neural Network to be used for the classification.
The CNN will use a Tensorflow model that is trained on the supplied data, it will then use the model to classify new data.
We will also include the code to generate and test both the Tensorflow and Tensorflow Lite models.
Once generated, we will test the Tensorflow Lite model to ensure it classifies the data as well as the floating point model.
M↓ MARKDOWN HELP
italicssurround text with
*asterisks*
boldsurround text with
**two asterisks**
hyperlink
[hyperlink](https://example.com)
or just a bare URL
code
surround text with
`backticks`
strikethroughsurround text with
~~two tilde characters~~
quote
prefix with
>

No comments or questions yet. Will you be the one who will break the ice?

OUR SPONSORS